binutils-gdb/gdb/testsuite/gdb.threads/step-over-lands-on-breakpoint.exp

79 lines
2.6 KiB
Plaintext
Raw Normal View History

# Copyright (C) 2014-2020 Free Software Foundation, Inc.
Fix missing breakpoint/watchpoint hits, eliminate deferred_step_ptid. Consider the case of the user doing "step" in thread 2, while thread 1 had previously stopped for a breakpoint. In order to make progress, GDB makes thread 1 step over its breakpoint first (with all other threads stopped), and once that is over, thread 2 then starts stepping (with thread 1 and all others running free, by default). If GDB didn't do that, thread 1 would just trip on the same breakpoint immediately again. This is what the prepare_to_proceed / deferred_step_ptid code is all about. However, deferred_step_ptid code resumes the target with: resume (1, GDB_SIGNAL_0); prepare_to_wait (ecs); return; Recall we were just stepping over a breakpoint when we get here. That means that _nothing_ had installed breakpoints yet! If there's another breakpoint just after the breakpoint that was just stepped, we'll miss it. The fix for that would be to use keep_going instead. However, there are more problems. What if the instruction that was just single-stepped triggers a watchpoint? Currently, GDB just happily resumes the thread, losing that too... Missed watchpoints will need yet further fixes, but we should keep those in mind. So the fix must be to let the trap fall through the regular bpstat handling, and only if no breakpoint, watchpoint, etc. claims the trap, shall we switch back to the stepped thread. Now, nowadays, we have code at the tail end of trap handling that does exactly that -- switch back to the stepped thread (switch_back_to_the_stepped_thread). So the deferred_step_ptid code is just standing in the way, and can simply be eliminated, fixing bugs in the process. Sweet. The comment about spurious "Switching to ..." made me pause, but is actually stale nowadays. That isn't needed anymore. previous_inferior_ptid used to be re-set at each (internal) event, but now it's only touched in proceed and normal stop. The two tests added by this patch fail without the fix. Tested on x86_64 Fedora 17 (also against my software single-stepping on x86 branch). gdb/ 2014-03-20 Pedro Alves <palves@redhat.com> * infrun.c (previous_inferior_ptid): Adjust comment. (deferred_step_ptid): Delete. (infrun_thread_ptid_changed, prepare_to_proceed) (init_wait_for_inferior): Adjust. (handle_signal_stop): Delete deferred_step_ptid handling. gdb/testsuite/ 2014-03-20 Pedro Alves <palves@redhat.com> * gdb.threads/step-over-lands-on-breakpoint.c: New file. * gdb.threads/step-over-lands-on-breakpoint.exp: New file.
2014-03-20 21:26:31 +08:00
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
# Test that when a step-over lands on a breakpoint, that breakpoint
# hit is reported.
standard_testfile
set executable ${testfile}
if {[gdb_compile_pthreads "${srcdir}/${subdir}/${srcfile}" "${binfile}" \
executable [list debug "incdir=${objdir}"]] != "" } {
return -1
}
# The test proper. DISPLACED is true if we should try with displaced
# stepping. COMMAND is the execution command to test.
proc do_test {displaced command} {
global executable
with_test_prefix "displaced=$displaced: $command" {
Fix missing breakpoint/watchpoint hits, eliminate deferred_step_ptid. Consider the case of the user doing "step" in thread 2, while thread 1 had previously stopped for a breakpoint. In order to make progress, GDB makes thread 1 step over its breakpoint first (with all other threads stopped), and once that is over, thread 2 then starts stepping (with thread 1 and all others running free, by default). If GDB didn't do that, thread 1 would just trip on the same breakpoint immediately again. This is what the prepare_to_proceed / deferred_step_ptid code is all about. However, deferred_step_ptid code resumes the target with: resume (1, GDB_SIGNAL_0); prepare_to_wait (ecs); return; Recall we were just stepping over a breakpoint when we get here. That means that _nothing_ had installed breakpoints yet! If there's another breakpoint just after the breakpoint that was just stepped, we'll miss it. The fix for that would be to use keep_going instead. However, there are more problems. What if the instruction that was just single-stepped triggers a watchpoint? Currently, GDB just happily resumes the thread, losing that too... Missed watchpoints will need yet further fixes, but we should keep those in mind. So the fix must be to let the trap fall through the regular bpstat handling, and only if no breakpoint, watchpoint, etc. claims the trap, shall we switch back to the stepped thread. Now, nowadays, we have code at the tail end of trap handling that does exactly that -- switch back to the stepped thread (switch_back_to_the_stepped_thread). So the deferred_step_ptid code is just standing in the way, and can simply be eliminated, fixing bugs in the process. Sweet. The comment about spurious "Switching to ..." made me pause, but is actually stale nowadays. That isn't needed anymore. previous_inferior_ptid used to be re-set at each (internal) event, but now it's only touched in proceed and normal stop. The two tests added by this patch fail without the fix. Tested on x86_64 Fedora 17 (also against my software single-stepping on x86 branch). gdb/ 2014-03-20 Pedro Alves <palves@redhat.com> * infrun.c (previous_inferior_ptid): Adjust comment. (deferred_step_ptid): Delete. (infrun_thread_ptid_changed, prepare_to_proceed) (init_wait_for_inferior): Adjust. (handle_signal_stop): Delete deferred_step_ptid handling. gdb/testsuite/ 2014-03-20 Pedro Alves <palves@redhat.com> * gdb.threads/step-over-lands-on-breakpoint.c: New file. * gdb.threads/step-over-lands-on-breakpoint.exp: New file.
2014-03-20 21:26:31 +08:00
clean_restart $executable
if ![runto_main] {
continue
}
gdb_test_no_output "set displaced-stepping $displaced"
Fix missing breakpoint/watchpoint hits, eliminate deferred_step_ptid. Consider the case of the user doing "step" in thread 2, while thread 1 had previously stopped for a breakpoint. In order to make progress, GDB makes thread 1 step over its breakpoint first (with all other threads stopped), and once that is over, thread 2 then starts stepping (with thread 1 and all others running free, by default). If GDB didn't do that, thread 1 would just trip on the same breakpoint immediately again. This is what the prepare_to_proceed / deferred_step_ptid code is all about. However, deferred_step_ptid code resumes the target with: resume (1, GDB_SIGNAL_0); prepare_to_wait (ecs); return; Recall we were just stepping over a breakpoint when we get here. That means that _nothing_ had installed breakpoints yet! If there's another breakpoint just after the breakpoint that was just stepped, we'll miss it. The fix for that would be to use keep_going instead. However, there are more problems. What if the instruction that was just single-stepped triggers a watchpoint? Currently, GDB just happily resumes the thread, losing that too... Missed watchpoints will need yet further fixes, but we should keep those in mind. So the fix must be to let the trap fall through the regular bpstat handling, and only if no breakpoint, watchpoint, etc. claims the trap, shall we switch back to the stepped thread. Now, nowadays, we have code at the tail end of trap handling that does exactly that -- switch back to the stepped thread (switch_back_to_the_stepped_thread). So the deferred_step_ptid code is just standing in the way, and can simply be eliminated, fixing bugs in the process. Sweet. The comment about spurious "Switching to ..." made me pause, but is actually stale nowadays. That isn't needed anymore. previous_inferior_ptid used to be re-set at each (internal) event, but now it's only touched in proceed and normal stop. The two tests added by this patch fail without the fix. Tested on x86_64 Fedora 17 (also against my software single-stepping on x86 branch). gdb/ 2014-03-20 Pedro Alves <palves@redhat.com> * infrun.c (previous_inferior_ptid): Adjust comment. (deferred_step_ptid): Delete. (infrun_thread_ptid_changed, prepare_to_proceed) (init_wait_for_inferior): Adjust. (handle_signal_stop): Delete deferred_step_ptid handling. gdb/testsuite/ 2014-03-20 Pedro Alves <palves@redhat.com> * gdb.threads/step-over-lands-on-breakpoint.c: New file. * gdb.threads/step-over-lands-on-breakpoint.exp: New file.
2014-03-20 21:26:31 +08:00
gdb_breakpoint [gdb_get_line_number "set wait-thread breakpoint here"]
gdb_continue_to_breakpoint "run to wait-thread breakpoint"
Reapply: List inferiors/threads/pspaces in ascending order [This reapplies a change that was accidentally reverted with c0ecb95f3d.] Before: (gdb) info threads Id Target Id Frame 3 Thread 0x7ffff77c3700 (LWP 29035) callme () at foo.c:30 2 Thread 0x7ffff7fc4700 (LWP 29034) 0x000000000040087b in child_function_2 (arg=0x0) at foo.c:60 * 1 Thread 0x7ffff7fc5740 (LWP 29030) 0x0000003b37209237 in pthread_join (threadid=140737353893632, thread_return=0x0) at pthread_join.c:92 After: (gdb) info threads Id Target Id Frame * 1 Thread 0x7ffff7fc5740 (LWP 29030) 0x0000003b37209237 in pthread_join (threadid=140737353893632, thread_return=0x0) at pthread_join.c:92 2 Thread 0x7ffff7fc4700 (LWP 29034) 0x000000000040087b in child_function_2 (arg=0x0) at foo.c:60 3 Thread 0x7ffff77c3700 (LWP 29035) callme () at foo.c:30 gdb/doc/ChangeLog: 2015-11-24 Pedro Alves <palves@redhat.com> PR 17539 * gdb.texinfo (Inferiors and Programs): Adjust "maint info program-spaces" example to ascending order listing. (Threads): Adjust "info threads" example to ascending order listing. (Forks): Adjust "info inferiors" example to ascending order listing. gdb/ChangeLog: 2015-11-24 Pedro Alves <palves@redhat.com> PR 17539 * inferior.c (add_inferior_silent): Append the new inferior to the end of the list. * progspace.c (add_program_space): Append the new pspace to the end of the list. * thread.c (new_thread): Append the new thread to the end of the list. gdb/testsuite/ChangeLog: 2015-11-24 Pedro Alves <palves@redhat.com> PR 17539 * gdb.base/foll-exec-mode.exp: Adjust to GDB listing inferiors and threads in ascending order. * gdb.base/foll-fork.exp: Likewise. * gdb.base/foll-vfork.exp: Likewise. * gdb.base/multi-forks.exp: Likewise. * gdb.mi/mi-nonstop.exp: Likewise. * gdb.mi/mi-nsintrall.exp: Likewise. * gdb.multi/base.exp: Likewise. * gdb.multi/multi-arch.exp: Likewise. * gdb.python/py-inferior.exp: Likewise. * gdb.threads/break-while-running.exp: Likewise. * gdb.threads/execl.exp: Likewise. * gdb.threads/gcore-thread.exp: Likewise. * gdb.threads/info-threads-cur-sal.exp: Likewise. * gdb.threads/kill.exp: Likewise. * gdb.threads/linux-dp.exp: Likewise. * gdb.threads/multiple-step-overs.exp: Likewise. * gdb.threads/next-bp-other-thread.exp: Likewise. * gdb.threads/step-bg-decr-pc-switch-thread.exp: Likewise. * gdb.threads/step-over-lands-on-breakpoint.exp: Likewise. * gdb.threads/step-over-trips-on-watchpoint.exp: Likewise. * gdb.threads/thread-find.exp: Likewise. * gdb.threads/tls.exp: Likewise. * lib/mi-support.exp (mi_reverse_list): Delete. (mi_check_thread_states): No longer reverse list.
2016-01-12 09:12:38 +08:00
gdb_test "info threads" "\\\* 1 .* 2 .*" "info threads shows all threads"
Fix missing breakpoint/watchpoint hits, eliminate deferred_step_ptid. Consider the case of the user doing "step" in thread 2, while thread 1 had previously stopped for a breakpoint. In order to make progress, GDB makes thread 1 step over its breakpoint first (with all other threads stopped), and once that is over, thread 2 then starts stepping (with thread 1 and all others running free, by default). If GDB didn't do that, thread 1 would just trip on the same breakpoint immediately again. This is what the prepare_to_proceed / deferred_step_ptid code is all about. However, deferred_step_ptid code resumes the target with: resume (1, GDB_SIGNAL_0); prepare_to_wait (ecs); return; Recall we were just stepping over a breakpoint when we get here. That means that _nothing_ had installed breakpoints yet! If there's another breakpoint just after the breakpoint that was just stepped, we'll miss it. The fix for that would be to use keep_going instead. However, there are more problems. What if the instruction that was just single-stepped triggers a watchpoint? Currently, GDB just happily resumes the thread, losing that too... Missed watchpoints will need yet further fixes, but we should keep those in mind. So the fix must be to let the trap fall through the regular bpstat handling, and only if no breakpoint, watchpoint, etc. claims the trap, shall we switch back to the stepped thread. Now, nowadays, we have code at the tail end of trap handling that does exactly that -- switch back to the stepped thread (switch_back_to_the_stepped_thread). So the deferred_step_ptid code is just standing in the way, and can simply be eliminated, fixing bugs in the process. Sweet. The comment about spurious "Switching to ..." made me pause, but is actually stale nowadays. That isn't needed anymore. previous_inferior_ptid used to be re-set at each (internal) event, but now it's only touched in proceed and normal stop. The two tests added by this patch fail without the fix. Tested on x86_64 Fedora 17 (also against my software single-stepping on x86 branch). gdb/ 2014-03-20 Pedro Alves <palves@redhat.com> * infrun.c (previous_inferior_ptid): Adjust comment. (deferred_step_ptid): Delete. (infrun_thread_ptid_changed, prepare_to_proceed) (init_wait_for_inferior): Adjust. (handle_signal_stop): Delete deferred_step_ptid handling. gdb/testsuite/ 2014-03-20 Pedro Alves <palves@redhat.com> * gdb.threads/step-over-lands-on-breakpoint.c: New file. * gdb.threads/step-over-lands-on-breakpoint.exp: New file.
2014-03-20 21:26:31 +08:00
gdb_test_no_output "set scheduler-locking on"
delete_breakpoints
gdb_breakpoint [gdb_get_line_number "set breakpoint child here"]
gdb_test "thread 2" "Switching to .*"
gdb_continue_to_breakpoint "run to breakpoint in thread 2"
gdb_test "p counter = 0" " = 0" "unbreak loop in thread 2"
# Set a breakpoint exactly where the step-over will land.
gdb_breakpoint [gdb_get_line_number "breakpoint after step-over here"]
# Switch back to thread 1 and disable scheduler locking.
gdb_test "thread 1" "Switching to .*"
gdb_test_no_output "set scheduler-locking off"
# Thread 2 is still stopped at a breakpoint that needs to be
Fix step-over-{trips-on-watchpoint|lands-on-breakpoint}.exp race On a target that is both always in non-stop mode and can do displaced stepping (such as native x86_64 GNU/Linux, with "maint set target-non-stop on"), the step-over-trips-on-watchpoint.exp test sometimes fails like this: (gdb) PASS: gdb.threads/step-over-trips-on-watchpoint.exp: no thread-specific bp: step: thread 1 set scheduler-locking off (gdb) PASS: gdb.threads/step-over-trips-on-watchpoint.exp: no thread-specific bp: step: set scheduler-locking off step -[Switching to Thread 0x7ffff7fc0700 (LWP 11782)] -Hardware watchpoint 4: watch_me - -Old value = 0 -New value = 1 -child_function (arg=0x0) at /home/pedro/gdb/mygit/src/gdb/testsuite/gdb.threads/step-over-trips-on-watchpoint.c:39 -39 other = 1; /* set thread-specific breakpoint here */ -(gdb) PASS: gdb.threads/step-over-trips-on-watchpoint.exp: no thread-specific bp: step: step +wait_threads () at /home/pedro/gdb/mygit/src/gdb/testsuite/gdb.threads/step-over-trips-on-watchpoint.c:49 +49 return 1; /* in wait_threads */ +(gdb) FAIL: gdb.threads/step-over-trips-on-watchpoint.exp: no thread-specific bp: step: step Note "scheduler-locking" was set off. The problem is that on such targets, the step-over of thread 2 and the "step" of thread 1 can be set to run simultaneously (since with displaced stepping the breakpoint isn't ever removed from the target), and sometimes, the "step" of thread 1 finishes first, so it'd take another resume to see the watchpoint trigger. Fix this by replacing the wait_threads function with a one-line infinite loop that doesn't call any function, so that the "step" of thread 1 never finishes. gdb/testsuite/ChangeLog: 2015-08-07 Pedro Alves <palves@redhat.com> * gdb.threads/step-over-lands-on-breakpoint.c (wait_threads): Delete function. (main): Add alarm. Run an infinite loop instead of calling wait_threads. * gdb.threads/step-over-lands-on-breakpoint.exp (do_test): Change comment. * gdb.threads/step-over-trips-on-watchpoint.c (wait_threads): Delete function. (main): Add alarm. Run an infinite loop instead of calling wait_threads. * gdb.threads/step-over-trips-on-watchpoint.exp (do_test): Change comment.
2015-08-07 01:22:59 +08:00
# stepped over. However, right where the step-over lands
# there's another breakpoint installed, which should trap and
# be reported to the user.
Fix missing breakpoint/watchpoint hits, eliminate deferred_step_ptid. Consider the case of the user doing "step" in thread 2, while thread 1 had previously stopped for a breakpoint. In order to make progress, GDB makes thread 1 step over its breakpoint first (with all other threads stopped), and once that is over, thread 2 then starts stepping (with thread 1 and all others running free, by default). If GDB didn't do that, thread 1 would just trip on the same breakpoint immediately again. This is what the prepare_to_proceed / deferred_step_ptid code is all about. However, deferred_step_ptid code resumes the target with: resume (1, GDB_SIGNAL_0); prepare_to_wait (ecs); return; Recall we were just stepping over a breakpoint when we get here. That means that _nothing_ had installed breakpoints yet! If there's another breakpoint just after the breakpoint that was just stepped, we'll miss it. The fix for that would be to use keep_going instead. However, there are more problems. What if the instruction that was just single-stepped triggers a watchpoint? Currently, GDB just happily resumes the thread, losing that too... Missed watchpoints will need yet further fixes, but we should keep those in mind. So the fix must be to let the trap fall through the regular bpstat handling, and only if no breakpoint, watchpoint, etc. claims the trap, shall we switch back to the stepped thread. Now, nowadays, we have code at the tail end of trap handling that does exactly that -- switch back to the stepped thread (switch_back_to_the_stepped_thread). So the deferred_step_ptid code is just standing in the way, and can simply be eliminated, fixing bugs in the process. Sweet. The comment about spurious "Switching to ..." made me pause, but is actually stale nowadays. That isn't needed anymore. previous_inferior_ptid used to be re-set at each (internal) event, but now it's only touched in proceed and normal stop. The two tests added by this patch fail without the fix. Tested on x86_64 Fedora 17 (also against my software single-stepping on x86 branch). gdb/ 2014-03-20 Pedro Alves <palves@redhat.com> * infrun.c (previous_inferior_ptid): Adjust comment. (deferred_step_ptid): Delete. (infrun_thread_ptid_changed, prepare_to_proceed) (init_wait_for_inferior): Adjust. (handle_signal_stop): Delete deferred_step_ptid handling. gdb/testsuite/ 2014-03-20 Pedro Alves <palves@redhat.com> * gdb.threads/step-over-lands-on-breakpoint.c: New file. * gdb.threads/step-over-lands-on-breakpoint.exp: New file.
2014-03-20 21:26:31 +08:00
gdb_test "$command" "step-over here.*"
}
}
foreach displaced { "off" "on" } {
if { $displaced != "off" && ![support_displaced_stepping] } {
continue
}
# Cover both stepping and non-stepping execution commands.
foreach command { "step" "next" "continue" } {
do_test $displaced $command
}
}