Time-LLM/utils/m4_summary.py
2024-01-29 15:53:06 +11:00

141 lines
6.0 KiB
Python

# This source code is provided for the purposes of scientific reproducibility
# under the following limited license from Element AI Inc. The code is an
# implementation of the N-BEATS model (Oreshkin et al., N-BEATS: Neural basis
# expansion analysis for interpretable time series forecasting,
# https://arxiv.org/abs/1905.10437). The copyright to the source code is
# licensed under the Creative Commons - Attribution-NonCommercial 4.0
# International license (CC BY-NC 4.0):
# https://creativecommons.org/licenses/by-nc/4.0/. Any commercial use (whether
# for the benefit of third parties or internally in production) requires an
# explicit license. The subject-matter of the N-BEATS model and associated
# materials are the property of Element AI Inc. and may be subject to patent
# protection. No license to patents is granted hereunder (whether express or
# implied). Copyright 2020 Element AI Inc. All rights reserved.
"""
M4 Summary
"""
from collections import OrderedDict
import numpy as np
import pandas as pd
from data_provider.m4 import M4Dataset
from data_provider.m4 import M4Meta
import os
def group_values(values, groups, group_name):
return np.array([v[~np.isnan(v)] for v in values[groups == group_name]])
def mase(forecast, insample, outsample, frequency):
return np.mean(np.abs(forecast - outsample)) / np.mean(np.abs(insample[:-frequency] - insample[frequency:]))
def smape_2(forecast, target):
denom = np.abs(target) + np.abs(forecast)
# divide by 1.0 instead of 0.0, in case when denom is zero the enumerator will be 0.0 anyway.
denom[denom == 0.0] = 1.0
return 200 * np.abs(forecast - target) / denom
def mape(forecast, target):
denom = np.abs(target)
# divide by 1.0 instead of 0.0, in case when denom is zero the enumerator will be 0.0 anyway.
denom[denom == 0.0] = 1.0
return 100 * np.abs(forecast - target) / denom
class M4Summary:
def __init__(self, file_path, root_path):
self.file_path = file_path
self.training_set = M4Dataset.load(training=True, dataset_file=root_path)
self.test_set = M4Dataset.load(training=False, dataset_file=root_path)
self.naive_path = os.path.join(root_path, 'submission-Naive2.csv')
def evaluate(self):
"""
Evaluate forecasts using M4 test dataset.
:param forecast: Forecasts. Shape: timeseries, time.
:return: sMAPE and OWA grouped by seasonal patterns.
"""
grouped_owa = OrderedDict()
naive2_forecasts = pd.read_csv(self.naive_path).values[:, 1:].astype(np.float32)
naive2_forecasts = np.array([v[~np.isnan(v)] for v in naive2_forecasts])
model_mases = {}
naive2_smapes = {}
naive2_mases = {}
grouped_smapes = {}
grouped_mapes = {}
for group_name in M4Meta.seasonal_patterns:
file_name = self.file_path + group_name + "_forecast.csv"
if os.path.exists(file_name):
model_forecast = pd.read_csv(file_name).values
naive2_forecast = group_values(naive2_forecasts, self.test_set.groups, group_name)
target = group_values(self.test_set.values, self.test_set.groups, group_name)
# all timeseries within group have same frequency
frequency = self.training_set.frequencies[self.test_set.groups == group_name][0]
insample = group_values(self.training_set.values, self.test_set.groups, group_name)
model_mases[group_name] = np.mean([mase(forecast=model_forecast[i],
insample=insample[i],
outsample=target[i],
frequency=frequency) for i in range(len(model_forecast))])
naive2_mases[group_name] = np.mean([mase(forecast=naive2_forecast[i],
insample=insample[i],
outsample=target[i],
frequency=frequency) for i in range(len(model_forecast))])
naive2_smapes[group_name] = np.mean(smape_2(naive2_forecast, target))
grouped_smapes[group_name] = np.mean(smape_2(forecast=model_forecast, target=target))
grouped_mapes[group_name] = np.mean(mape(forecast=model_forecast, target=target))
grouped_smapes = self.summarize_groups(grouped_smapes)
grouped_mapes = self.summarize_groups(grouped_mapes)
grouped_model_mases = self.summarize_groups(model_mases)
grouped_naive2_smapes = self.summarize_groups(naive2_smapes)
grouped_naive2_mases = self.summarize_groups(naive2_mases)
for k in grouped_model_mases.keys():
grouped_owa[k] = (grouped_model_mases[k] / grouped_naive2_mases[k] +
grouped_smapes[k] / grouped_naive2_smapes[k]) / 2
def round_all(d):
return dict(map(lambda kv: (kv[0], np.round(kv[1], 3)), d.items()))
return round_all(grouped_smapes), round_all(grouped_owa), round_all(grouped_mapes), round_all(
grouped_model_mases)
def summarize_groups(self, scores):
"""
Re-group scores respecting M4 rules.
:param scores: Scores per group.
:return: Grouped scores.
"""
scores_summary = OrderedDict()
def group_count(group_name):
return len(np.where(self.test_set.groups == group_name)[0])
weighted_score = {}
for g in ['Yearly', 'Quarterly', 'Monthly']:
weighted_score[g] = scores[g] * group_count(g)
scores_summary[g] = scores[g]
others_score = 0
others_count = 0
for g in ['Weekly', 'Daily', 'Hourly']:
others_score += scores[g] * group_count(g)
others_count += group_count(g)
weighted_score['Others'] = others_score
scores_summary['Others'] = others_score / others_count
average = np.sum(list(weighted_score.values())) / len(self.test_set.groups)
scores_summary['Average'] = average
return scores_summary