mirror of
https://github.com/KimMeen/Time-LLM.git
synced 2024-11-27 07:49:53 +08:00
204 lines
6.7 KiB
Python
204 lines
6.7 KiB
Python
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
|
|
class my_Layernorm(nn.Module):
|
|
"""
|
|
Special designed layernorm for the seasonal part
|
|
"""
|
|
|
|
def __init__(self, channels):
|
|
super(my_Layernorm, self).__init__()
|
|
self.layernorm = nn.LayerNorm(channels)
|
|
|
|
def forward(self, x):
|
|
x_hat = self.layernorm(x)
|
|
bias = torch.mean(x_hat, dim=1).unsqueeze(1).repeat(1, x.shape[1], 1)
|
|
return x_hat - bias
|
|
|
|
|
|
class moving_avg(nn.Module):
|
|
"""
|
|
Moving average block to highlight the trend of time series
|
|
"""
|
|
|
|
def __init__(self, kernel_size, stride):
|
|
super(moving_avg, self).__init__()
|
|
self.kernel_size = kernel_size
|
|
self.avg = nn.AvgPool1d(kernel_size=kernel_size, stride=stride, padding=0)
|
|
|
|
def forward(self, x):
|
|
# padding on the both ends of time series
|
|
front = x[:, 0:1, :].repeat(1, (self.kernel_size - 1) // 2, 1)
|
|
end = x[:, -1:, :].repeat(1, (self.kernel_size - 1) // 2, 1)
|
|
x = torch.cat([front, x, end], dim=1)
|
|
x = self.avg(x.permute(0, 2, 1))
|
|
x = x.permute(0, 2, 1)
|
|
return x
|
|
|
|
|
|
class series_decomp(nn.Module):
|
|
"""
|
|
Series decomposition block
|
|
"""
|
|
|
|
def __init__(self, kernel_size):
|
|
super(series_decomp, self).__init__()
|
|
self.moving_avg = moving_avg(kernel_size, stride=1)
|
|
|
|
def forward(self, x):
|
|
moving_mean = self.moving_avg(x)
|
|
res = x - moving_mean
|
|
return res, moving_mean
|
|
|
|
|
|
class series_decomp_multi(nn.Module):
|
|
"""
|
|
Multiple Series decomposition block from FEDformer
|
|
"""
|
|
|
|
def __init__(self, kernel_size):
|
|
super(series_decomp_multi, self).__init__()
|
|
self.kernel_size = kernel_size
|
|
self.series_decomp = [series_decomp(kernel) for kernel in kernel_size]
|
|
|
|
def forward(self, x):
|
|
moving_mean = []
|
|
res = []
|
|
for func in self.series_decomp:
|
|
sea, moving_avg = func(x)
|
|
moving_mean.append(moving_avg)
|
|
res.append(sea)
|
|
|
|
sea = sum(res) / len(res)
|
|
moving_mean = sum(moving_mean) / len(moving_mean)
|
|
return sea, moving_mean
|
|
|
|
|
|
class EncoderLayer(nn.Module):
|
|
"""
|
|
Autoformer encoder layer with the progressive decomposition architecture
|
|
"""
|
|
|
|
def __init__(self, attention, d_model, d_ff=None, moving_avg=25, dropout=0.1, activation="relu"):
|
|
super(EncoderLayer, self).__init__()
|
|
d_ff = d_ff or 4 * d_model
|
|
self.attention = attention
|
|
self.conv1 = nn.Conv1d(in_channels=d_model, out_channels=d_ff, kernel_size=1, bias=False)
|
|
self.conv2 = nn.Conv1d(in_channels=d_ff, out_channels=d_model, kernel_size=1, bias=False)
|
|
self.decomp1 = series_decomp(moving_avg)
|
|
self.decomp2 = series_decomp(moving_avg)
|
|
self.dropout = nn.Dropout(dropout)
|
|
self.activation = F.relu if activation == "relu" else F.gelu
|
|
|
|
def forward(self, x, attn_mask=None):
|
|
new_x, attn = self.attention(
|
|
x, x, x,
|
|
attn_mask=attn_mask
|
|
)
|
|
x = x + self.dropout(new_x)
|
|
x, _ = self.decomp1(x)
|
|
y = x
|
|
y = self.dropout(self.activation(self.conv1(y.transpose(-1, 1))))
|
|
y = self.dropout(self.conv2(y).transpose(-1, 1))
|
|
res, _ = self.decomp2(x + y)
|
|
return res, attn
|
|
|
|
|
|
class Encoder(nn.Module):
|
|
"""
|
|
Autoformer encoder
|
|
"""
|
|
|
|
def __init__(self, attn_layers, conv_layers=None, norm_layer=None):
|
|
super(Encoder, self).__init__()
|
|
self.attn_layers = nn.ModuleList(attn_layers)
|
|
self.conv_layers = nn.ModuleList(conv_layers) if conv_layers is not None else None
|
|
self.norm = norm_layer
|
|
|
|
def forward(self, x, attn_mask=None):
|
|
attns = []
|
|
if self.conv_layers is not None:
|
|
for attn_layer, conv_layer in zip(self.attn_layers, self.conv_layers):
|
|
x, attn = attn_layer(x, attn_mask=attn_mask)
|
|
x = conv_layer(x)
|
|
attns.append(attn)
|
|
x, attn = self.attn_layers[-1](x)
|
|
attns.append(attn)
|
|
else:
|
|
for attn_layer in self.attn_layers:
|
|
x, attn = attn_layer(x, attn_mask=attn_mask)
|
|
attns.append(attn)
|
|
|
|
if self.norm is not None:
|
|
x = self.norm(x)
|
|
|
|
return x, attns
|
|
|
|
|
|
class DecoderLayer(nn.Module):
|
|
"""
|
|
Autoformer decoder layer with the progressive decomposition architecture
|
|
"""
|
|
|
|
def __init__(self, self_attention, cross_attention, d_model, c_out, d_ff=None,
|
|
moving_avg=25, dropout=0.1, activation="relu"):
|
|
super(DecoderLayer, self).__init__()
|
|
d_ff = d_ff or 4 * d_model
|
|
self.self_attention = self_attention
|
|
self.cross_attention = cross_attention
|
|
self.conv1 = nn.Conv1d(in_channels=d_model, out_channels=d_ff, kernel_size=1, bias=False)
|
|
self.conv2 = nn.Conv1d(in_channels=d_ff, out_channels=d_model, kernel_size=1, bias=False)
|
|
self.decomp1 = series_decomp(moving_avg)
|
|
self.decomp2 = series_decomp(moving_avg)
|
|
self.decomp3 = series_decomp(moving_avg)
|
|
self.dropout = nn.Dropout(dropout)
|
|
self.projection = nn.Conv1d(in_channels=d_model, out_channels=c_out, kernel_size=3, stride=1, padding=1,
|
|
padding_mode='circular', bias=False)
|
|
self.activation = F.relu if activation == "relu" else F.gelu
|
|
|
|
def forward(self, x, cross, x_mask=None, cross_mask=None):
|
|
x = x + self.dropout(self.self_attention(
|
|
x, x, x,
|
|
attn_mask=x_mask
|
|
)[0])
|
|
x, trend1 = self.decomp1(x)
|
|
x = x + self.dropout(self.cross_attention(
|
|
x, cross, cross,
|
|
attn_mask=cross_mask
|
|
)[0])
|
|
x, trend2 = self.decomp2(x)
|
|
y = x
|
|
y = self.dropout(self.activation(self.conv1(y.transpose(-1, 1))))
|
|
y = self.dropout(self.conv2(y).transpose(-1, 1))
|
|
x, trend3 = self.decomp3(x + y)
|
|
|
|
residual_trend = trend1 + trend2 + trend3
|
|
residual_trend = self.projection(residual_trend.permute(0, 2, 1)).transpose(1, 2)
|
|
return x, residual_trend
|
|
|
|
|
|
class Decoder(nn.Module):
|
|
"""
|
|
Autoformer encoder
|
|
"""
|
|
|
|
def __init__(self, layers, norm_layer=None, projection=None):
|
|
super(Decoder, self).__init__()
|
|
self.layers = nn.ModuleList(layers)
|
|
self.norm = norm_layer
|
|
self.projection = projection
|
|
|
|
def forward(self, x, cross, x_mask=None, cross_mask=None, trend=None):
|
|
for layer in self.layers:
|
|
x, residual_trend = layer(x, cross, x_mask=x_mask, cross_mask=cross_mask)
|
|
trend = trend + residual_trend
|
|
|
|
if self.norm is not None:
|
|
x = self.norm(x)
|
|
|
|
if self.projection is not None:
|
|
x = self.projection(x)
|
|
return x, trend
|