Time-LLM/utils/tools.py
2024-04-01 17:45:07 +11:00

233 lines
8.1 KiB
Python

import numpy as np
import torch
import matplotlib.pyplot as plt
import shutil
from tqdm import tqdm
plt.switch_backend('agg')
def adjust_learning_rate(accelerator, optimizer, scheduler, epoch, args, printout=True):
if args.lradj == 'type1':
lr_adjust = {epoch: args.learning_rate * (0.5 ** ((epoch - 1) // 1))}
elif args.lradj == 'type2':
lr_adjust = {
2: 5e-5, 4: 1e-5, 6: 5e-6, 8: 1e-6,
10: 5e-7, 15: 1e-7, 20: 5e-8
}
elif args.lradj == 'type3':
lr_adjust = {epoch: args.learning_rate if epoch < 3 else args.learning_rate * (0.9 ** ((epoch - 3) // 1))}
elif args.lradj == 'PEMS':
lr_adjust = {epoch: args.learning_rate * (0.95 ** (epoch // 1))}
elif args.lradj == 'TST':
lr_adjust = {epoch: scheduler.get_last_lr()[0]}
elif args.lradj == 'constant':
lr_adjust = {epoch: args.learning_rate}
if epoch in lr_adjust.keys():
lr = lr_adjust[epoch]
for param_group in optimizer.param_groups:
param_group['lr'] = lr
if printout:
if accelerator is not None:
accelerator.print('Updating learning rate to {}'.format(lr))
else:
print('Updating learning rate to {}'.format(lr))
class EarlyStopping:
def __init__(self, accelerator=None, patience=7, verbose=False, delta=0, save_mode=True):
self.accelerator = accelerator
self.patience = patience
self.verbose = verbose
self.counter = 0
self.best_score = None
self.early_stop = False
self.val_loss_min = np.Inf
self.delta = delta
self.save_mode = save_mode
def __call__(self, val_loss, model, path):
score = -val_loss
if self.best_score is None:
self.best_score = score
if self.save_mode:
self.save_checkpoint(val_loss, model, path)
elif score < self.best_score + self.delta:
self.counter += 1
if self.accelerator is None:
print(f'EarlyStopping counter: {self.counter} out of {self.patience}')
else:
self.accelerator.print(f'EarlyStopping counter: {self.counter} out of {self.patience}')
if self.counter >= self.patience:
self.early_stop = True
else:
self.best_score = score
if self.save_mode:
self.save_checkpoint(val_loss, model, path)
self.counter = 0
def save_checkpoint(self, val_loss, model, path):
if self.verbose:
if self.accelerator is not None:
self.accelerator.print(
f'Validation loss decreased ({self.val_loss_min:.6f} --> {val_loss:.6f}). Saving model ...')
else:
print(
f'Validation loss decreased ({self.val_loss_min:.6f} --> {val_loss:.6f}). Saving model ...')
if self.accelerator is not None:
model = self.accelerator.unwrap_model(model)
torch.save(model.state_dict(), path + '/' + 'checkpoint')
else:
torch.save(model.state_dict(), path + '/' + 'checkpoint')
self.val_loss_min = val_loss
class dotdict(dict):
"""dot.notation access to dictionary attributes"""
__getattr__ = dict.get
__setattr__ = dict.__setitem__
__delattr__ = dict.__delitem__
class StandardScaler():
def __init__(self, mean, std):
self.mean = mean
self.std = std
def transform(self, data):
return (data - self.mean) / self.std
def inverse_transform(self, data):
return (data * self.std) + self.mean
def adjustment(gt, pred):
anomaly_state = False
for i in range(len(gt)):
if gt[i] == 1 and pred[i] == 1 and not anomaly_state:
anomaly_state = True
for j in range(i, 0, -1):
if gt[j] == 0:
break
else:
if pred[j] == 0:
pred[j] = 1
for j in range(i, len(gt)):
if gt[j] == 0:
break
else:
if pred[j] == 0:
pred[j] = 1
elif gt[i] == 0:
anomaly_state = False
if anomaly_state:
pred[i] = 1
return gt, pred
def cal_accuracy(y_pred, y_true):
return np.mean(y_pred == y_true)
def del_files(dir_path):
shutil.rmtree(dir_path)
def vali(args, accelerator, model, vali_data, vali_loader, criterion, mae_metric):
total_loss = []
total_mae_loss = []
model.eval()
with torch.no_grad():
for i, (batch_x, batch_y, batch_x_mark, batch_y_mark) in tqdm(enumerate(vali_loader)):
batch_x = batch_x.float().to(accelerator.device)
batch_y = batch_y.float()
batch_x_mark = batch_x_mark.float().to(accelerator.device)
batch_y_mark = batch_y_mark.float().to(accelerator.device)
# decoder input
dec_inp = torch.zeros_like(batch_y[:, -args.pred_len:, :]).float()
dec_inp = torch.cat([batch_y[:, :args.label_len, :], dec_inp], dim=1).float().to(
accelerator.device)
# encoder - decoder
if args.use_amp:
with torch.cuda.amp.autocast():
if args.output_attention:
outputs = model(batch_x, batch_x_mark, dec_inp, batch_y_mark)[0]
else:
outputs = model(batch_x, batch_x_mark, dec_inp, batch_y_mark)
else:
if args.output_attention:
outputs = model(batch_x, batch_x_mark, dec_inp, batch_y_mark)[0]
else:
outputs = model(batch_x, batch_x_mark, dec_inp, batch_y_mark)
outputs, batch_y = accelerator.gather_for_metrics((outputs, batch_y))
f_dim = -1 if args.features == 'MS' else 0
outputs = outputs[:, -args.pred_len:, f_dim:]
batch_y = batch_y[:, -args.pred_len:, f_dim:].to(accelerator.device)
pred = outputs.detach()
true = batch_y.detach()
loss = criterion(pred, true)
mae_loss = mae_metric(pred, true)
total_loss.append(loss.item())
total_mae_loss.append(mae_loss.item())
total_loss = np.average(total_loss)
total_mae_loss = np.average(total_mae_loss)
model.train()
return total_loss, total_mae_loss
def test(args, accelerator, model, train_loader, vali_loader, criterion):
x, _ = train_loader.dataset.last_insample_window()
y = vali_loader.dataset.timeseries
x = torch.tensor(x, dtype=torch.float32).to(accelerator.device)
x = x.unsqueeze(-1)
model.eval()
with torch.no_grad():
B, _, C = x.shape
dec_inp = torch.zeros((B, args.pred_len, C)).float().to(accelerator.device)
dec_inp = torch.cat([x[:, -args.label_len:, :], dec_inp], dim=1)
outputs = torch.zeros((B, args.pred_len, C)).float().to(accelerator.device)
id_list = np.arange(0, B, args.eval_batch_size)
id_list = np.append(id_list, B)
for i in range(len(id_list) - 1):
outputs[id_list[i]:id_list[i + 1], :, :] = model(
x[id_list[i]:id_list[i + 1]],
None,
dec_inp[id_list[i]:id_list[i + 1]],
None
)
accelerator.wait_for_everyone()
outputs = accelerator.gather_for_metrics(outputs)
f_dim = -1 if args.features == 'MS' else 0
outputs = outputs[:, -args.pred_len:, f_dim:]
pred = outputs
true = torch.from_numpy(np.array(y)).to(accelerator.device)
batch_y_mark = torch.ones(true.shape).to(accelerator.device)
true = accelerator.gather_for_metrics(true)
batch_y_mark = accelerator.gather_for_metrics(batch_y_mark)
loss = criterion(x[:, :, 0], args.frequency_map, pred[:, :, 0], true, batch_y_mark)
model.train()
return loss
def load_content(args):
if 'ETT' in args.data:
file = 'ETT'
else:
file = args.data
with open('./dataset/prompt_bank/{0}.txt'.format(file), 'r') as f:
content = f.read()
return content