mirror of
https://github.com/KimMeen/Time-LLM.git
synced 2024-11-21 03:13:47 +08:00
159 lines
6.7 KiB
Python
159 lines
6.7 KiB
Python
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from layers.Embed import DataEmbedding, DataEmbedding_wo_pos
|
|
from layers.AutoCorrelation import AutoCorrelation, AutoCorrelationLayer
|
|
from layers.Autoformer_EncDec import Encoder, Decoder, EncoderLayer, DecoderLayer, my_Layernorm, series_decomp
|
|
import math
|
|
import numpy as np
|
|
|
|
|
|
class Model(nn.Module):
|
|
"""
|
|
Autoformer is the first method to achieve the series-wise connection,
|
|
with inherent O(LlogL) complexity
|
|
Paper link: https://openreview.net/pdf?id=I55UqU-M11y
|
|
"""
|
|
|
|
def __init__(self, configs):
|
|
super(Model, self).__init__()
|
|
self.task_name = configs.task_name
|
|
self.seq_len = configs.seq_len
|
|
self.label_len = configs.label_len
|
|
self.pred_len = configs.pred_len
|
|
self.output_attention = configs.output_attention
|
|
|
|
# Decomp
|
|
kernel_size = configs.moving_avg
|
|
self.decomp = series_decomp(kernel_size)
|
|
|
|
# Embedding
|
|
self.enc_embedding = DataEmbedding_wo_pos(configs.enc_in, configs.d_model, configs.embed, configs.freq,
|
|
configs.dropout)
|
|
# Encoder
|
|
self.encoder = Encoder(
|
|
[
|
|
EncoderLayer(
|
|
AutoCorrelationLayer(
|
|
AutoCorrelation(False, configs.factor, attention_dropout=configs.dropout,
|
|
output_attention=configs.output_attention),
|
|
configs.d_model, configs.n_heads),
|
|
configs.d_model,
|
|
configs.d_ff,
|
|
moving_avg=configs.moving_avg,
|
|
dropout=configs.dropout,
|
|
activation=configs.activation
|
|
) for l in range(configs.e_layers)
|
|
],
|
|
norm_layer=my_Layernorm(configs.d_model)
|
|
)
|
|
# Decoder
|
|
if self.task_name == 'long_term_forecast' or self.task_name == 'short_term_forecast':
|
|
self.dec_embedding = DataEmbedding_wo_pos(configs.dec_in, configs.d_model, configs.embed, configs.freq,
|
|
configs.dropout)
|
|
self.decoder = Decoder(
|
|
[
|
|
DecoderLayer(
|
|
AutoCorrelationLayer(
|
|
AutoCorrelation(True, configs.factor, attention_dropout=configs.dropout,
|
|
output_attention=False),
|
|
configs.d_model, configs.n_heads),
|
|
AutoCorrelationLayer(
|
|
AutoCorrelation(False, configs.factor, attention_dropout=configs.dropout,
|
|
output_attention=False),
|
|
configs.d_model, configs.n_heads),
|
|
configs.d_model,
|
|
configs.c_out,
|
|
configs.d_ff,
|
|
moving_avg=configs.moving_avg,
|
|
dropout=configs.dropout,
|
|
activation=configs.activation,
|
|
)
|
|
for l in range(configs.d_layers)
|
|
],
|
|
norm_layer=my_Layernorm(configs.d_model),
|
|
projection=nn.Linear(configs.d_model, configs.c_out, bias=True)
|
|
)
|
|
if self.task_name == 'imputation':
|
|
self.projection = nn.Linear(
|
|
configs.d_model, configs.c_out, bias=True)
|
|
if self.task_name == 'anomaly_detection':
|
|
self.projection = nn.Linear(
|
|
configs.d_model, configs.c_out, bias=True)
|
|
if self.task_name == 'classification':
|
|
self.act = F.gelu
|
|
self.dropout = nn.Dropout(configs.dropout)
|
|
self.projection = nn.Linear(
|
|
configs.d_model * configs.seq_len, configs.num_class)
|
|
|
|
def forecast(self, x_enc, x_mark_enc, x_dec, x_mark_dec):
|
|
# decomp init
|
|
mean = torch.mean(x_enc, dim=1).unsqueeze(
|
|
1).repeat(1, self.pred_len, 1)
|
|
zeros = torch.zeros([x_dec.shape[0], self.pred_len,
|
|
x_dec.shape[2]], device=x_enc.device)
|
|
seasonal_init, trend_init = self.decomp(x_enc)
|
|
# decoder input
|
|
trend_init = torch.cat(
|
|
[trend_init[:, -self.label_len:, :], mean], dim=1)
|
|
seasonal_init = torch.cat(
|
|
[seasonal_init[:, -self.label_len:, :], zeros], dim=1)
|
|
# enc
|
|
enc_out = self.enc_embedding(x_enc, x_mark_enc)
|
|
enc_out, attns = self.encoder(enc_out, attn_mask=None)
|
|
# dec
|
|
dec_out = self.dec_embedding(seasonal_init, x_mark_dec)
|
|
seasonal_part, trend_part = self.decoder(dec_out, enc_out, x_mask=None, cross_mask=None,
|
|
trend=trend_init)
|
|
# final
|
|
dec_out = trend_part + seasonal_part
|
|
return dec_out
|
|
|
|
def imputation(self, x_enc, x_mark_enc, x_dec, x_mark_dec, mask):
|
|
# enc
|
|
enc_out = self.enc_embedding(x_enc, x_mark_enc)
|
|
enc_out, attns = self.encoder(enc_out, attn_mask=None)
|
|
# final
|
|
dec_out = self.projection(enc_out)
|
|
return dec_out
|
|
|
|
def anomaly_detection(self, x_enc):
|
|
# enc
|
|
enc_out = self.enc_embedding(x_enc, None)
|
|
enc_out, attns = self.encoder(enc_out, attn_mask=None)
|
|
# final
|
|
dec_out = self.projection(enc_out)
|
|
return dec_out
|
|
|
|
def classification(self, x_enc, x_mark_enc):
|
|
# enc
|
|
enc_out = self.enc_embedding(x_enc, None)
|
|
enc_out, attns = self.encoder(enc_out, attn_mask=None)
|
|
|
|
# Output
|
|
# the output transformer encoder/decoder embeddings don't include non-linearity
|
|
output = self.act(enc_out)
|
|
output = self.dropout(output)
|
|
# zero-out padding embeddings
|
|
output = output * x_mark_enc.unsqueeze(-1)
|
|
# (batch_size, seq_length * d_model)
|
|
output = output.reshape(output.shape[0], -1)
|
|
output = self.projection(output) # (batch_size, num_classes)
|
|
return output
|
|
|
|
def forward(self, x_enc, x_mark_enc, x_dec, x_mark_dec, mask=None):
|
|
if self.task_name == 'long_term_forecast' or self.task_name == 'short_term_forecast':
|
|
dec_out = self.forecast(x_enc, x_mark_enc, x_dec, x_mark_dec)
|
|
return dec_out[:, -self.pred_len:, :] # [B, L, D]
|
|
if self.task_name == 'imputation':
|
|
dec_out = self.imputation(
|
|
x_enc, x_mark_enc, x_dec, x_mark_dec, mask)
|
|
return dec_out # [B, L, D]
|
|
if self.task_name == 'anomaly_detection':
|
|
dec_out = self.anomaly_detection(x_enc)
|
|
return dec_out # [B, L, D]
|
|
if self.task_name == 'classification':
|
|
dec_out = self.classification(x_enc, x_mark_enc)
|
|
return dec_out # [B, N]
|
|
return None
|