import torch import torch.nn as nn import torch.nn.functional as F class ConvLayer(nn.Module): def __init__(self, c_in): super(ConvLayer, self).__init__() self.downConv = nn.Conv1d(in_channels=c_in, out_channels=c_in, kernel_size=3, padding=2, padding_mode='circular') self.norm = nn.BatchNorm1d(c_in) self.activation = nn.ELU() self.maxPool = nn.MaxPool1d(kernel_size=3, stride=2, padding=1) def forward(self, x): x = self.downConv(x.permute(0, 2, 1)) x = self.norm(x) x = self.activation(x) x = self.maxPool(x) x = x.transpose(1, 2) return x class EncoderLayer(nn.Module): def __init__(self, attention, d_model, d_ff=None, dropout=0.1, activation="relu"): super(EncoderLayer, self).__init__() d_ff = d_ff or 4 * d_model self.attention = attention self.conv1 = nn.Conv1d(in_channels=d_model, out_channels=d_ff, kernel_size=1) self.conv2 = nn.Conv1d(in_channels=d_ff, out_channels=d_model, kernel_size=1) self.norm1 = nn.LayerNorm(d_model) self.norm2 = nn.LayerNorm(d_model) self.dropout = nn.Dropout(dropout) self.activation = F.relu if activation == "relu" else F.gelu def forward(self, x, attn_mask=None, tau=None, delta=None): new_x, attn = self.attention( x, x, x, attn_mask=attn_mask, tau=tau, delta=delta ) x = x + self.dropout(new_x) y = x = self.norm1(x) y = self.dropout(self.activation(self.conv1(y.transpose(-1, 1)))) y = self.dropout(self.conv2(y).transpose(-1, 1)) return self.norm2(x + y), attn class Encoder(nn.Module): def __init__(self, attn_layers, conv_layers=None, norm_layer=None): super(Encoder, self).__init__() self.attn_layers = nn.ModuleList(attn_layers) self.conv_layers = nn.ModuleList(conv_layers) if conv_layers is not None else None self.norm = norm_layer def forward(self, x, attn_mask=None, tau=None, delta=None): # x [B, L, D] attns = [] if self.conv_layers is not None: for i, (attn_layer, conv_layer) in enumerate(zip(self.attn_layers, self.conv_layers)): delta = delta if i == 0 else None x, attn = attn_layer(x, attn_mask=attn_mask, tau=tau, delta=delta) x = conv_layer(x) attns.append(attn) x, attn = self.attn_layers[-1](x, tau=tau, delta=None) attns.append(attn) else: for attn_layer in self.attn_layers: x, attn = attn_layer(x, attn_mask=attn_mask, tau=tau, delta=delta) attns.append(attn) if self.norm is not None: x = self.norm(x) return x, attns class DecoderLayer(nn.Module): def __init__(self, self_attention, cross_attention, d_model, d_ff=None, dropout=0.1, activation="relu"): super(DecoderLayer, self).__init__() d_ff = d_ff or 4 * d_model self.self_attention = self_attention self.cross_attention = cross_attention self.conv1 = nn.Conv1d(in_channels=d_model, out_channels=d_ff, kernel_size=1) self.conv2 = nn.Conv1d(in_channels=d_ff, out_channels=d_model, kernel_size=1) self.norm1 = nn.LayerNorm(d_model) self.norm2 = nn.LayerNorm(d_model) self.norm3 = nn.LayerNorm(d_model) self.dropout = nn.Dropout(dropout) self.activation = F.relu if activation == "relu" else F.gelu def forward(self, x, cross, x_mask=None, cross_mask=None, tau=None, delta=None): x = x + self.dropout(self.self_attention( x, x, x, attn_mask=x_mask, tau=tau, delta=None )[0]) x = self.norm1(x) x = x + self.dropout(self.cross_attention( x, cross, cross, attn_mask=cross_mask, tau=tau, delta=delta )[0]) y = x = self.norm2(x) y = self.dropout(self.activation(self.conv1(y.transpose(-1, 1)))) y = self.dropout(self.conv2(y).transpose(-1, 1)) return self.norm3(x + y) class Decoder(nn.Module): def __init__(self, layers, norm_layer=None, projection=None): super(Decoder, self).__init__() self.layers = nn.ModuleList(layers) self.norm = norm_layer self.projection = projection def forward(self, x, cross, x_mask=None, cross_mask=None, tau=None, delta=None): for layer in self.layers: x = layer(x, cross, x_mask=x_mask, cross_mask=cross_mask, tau=tau, delta=delta) if self.norm is not None: x = self.norm(x) if self.projection is not None: x = self.projection(x) return x