Update README.md

This commit is contained in:
CityMind Lab 2024-06-03 18:08:58 +08:00 committed by GitHub
parent 062594ad4f
commit f11e5c8f4c
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -117,7 +117,20 @@ Please refer to ```run_main.py```, ```run_m4.py``` and ```run_pretrain.py``` for
## Further Reading
1, [**Position Paper: What Can Large Language Models Tell Us about Time Series Analysis**](https://arxiv.org/abs/2402.02713), in *ICML* 2024.
1, [**Foundation Models for Time Series Analysis: A Tutorial and Survey**](https://arxiv.org/pdf/2403.14735), in *KDD* 2024.
**Authors**: Yuxuan Liang, Haomin Wen, Yuqi Nie, Yushan Jiang, Ming Jin, Dongjin Song, Shirui Pan, Qingsong Wen*
```bibtex
@inproceedings{liang2024foundation,
title={Foundation models for time series analysis: A tutorial and survey},
author={Liang, Yuxuan and Wen, Haomin and Nie, Yuqi and Jiang, Yushan and Jin, Ming and Song, Dongjin and Pan, Shirui and Wen, Qingsong},
booktitle={ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 2024)},
year={2024}
}
```
2, [**Position Paper: What Can Large Language Models Tell Us about Time Series Analysis**](https://arxiv.org/abs/2402.02713), in *ICML* 2024.
**Authors**: Ming Jin, Yifan Zhang, Wei Chen, Kexin Zhang, Yuxuan Liang*, Bin Yang, Jindong Wang, Shirui Pan, Qingsong Wen*
@ -130,7 +143,7 @@ Please refer to ```run_main.py```, ```run_m4.py``` and ```run_pretrain.py``` for
}
```
2, [**Large Models for Time Series and Spatio-Temporal Data: A Survey and Outlook**](https://arxiv.org/abs/2310.10196), in *arXiv* 2023.
3, [**Large Models for Time Series and Spatio-Temporal Data: A Survey and Outlook**](https://arxiv.org/abs/2310.10196), in *arXiv* 2023.
[\[GitHub Repo\]](https://github.com/qingsongedu/Awesome-TimeSeries-SpatioTemporal-LM-LLM)
**Authors**: Ming Jin, Qingsong Wen*, Yuxuan Liang, Chaoli Zhang, Siqiao Xue, Xue Wang, James Zhang, Yi Wang, Haifeng Chen, Xiaoli Li (IEEE Fellow), Shirui Pan*, Vincent S. Tseng (IEEE Fellow), Yu Zheng (IEEE Fellow), Lei Chen (IEEE Fellow), Hui Xiong (IEEE Fellow)
@ -145,7 +158,7 @@ Please refer to ```run_main.py```, ```run_m4.py``` and ```run_pretrain.py``` for
```
3, [**Transformers in Time Series: A Survey**](https://arxiv.org/abs/2202.07125), in IJCAI 2023.
4, [**Transformers in Time Series: A Survey**](https://arxiv.org/abs/2202.07125), in IJCAI 2023.
[\[GitHub Repo\]](https://github.com/qingsongedu/time-series-transformers-review)
**Authors**: Qingsong Wen, Tian Zhou, Chaoli Zhang, Weiqi Chen, Ziqing Ma, Junchi Yan, Liang Sun
@ -159,7 +172,7 @@ Please refer to ```run_main.py```, ```run_m4.py``` and ```run_pretrain.py``` for
}
```
4, [**TimeMixer: Decomposable Multiscale Mixing for Time Series Forecasting**](https://openreview.net/pdf?id=7oLshfEIC2), in ICLR 2024.
5, [**TimeMixer: Decomposable Multiscale Mixing for Time Series Forecasting**](https://openreview.net/pdf?id=7oLshfEIC2), in ICLR 2024.
[\[GitHub Repo\]](https://github.com/kwuking/TimeMixer)
**Authors**: Shiyu Wang, Haixu Wu, Xiaoming Shi, Tengge Hu, Huakun Luo, Lintao Ma, James Y. Zhang, Jun Zhou