mirror of
https://github.com/KimMeen/Time-LLM.git
synced 2024-11-21 03:13:47 +08:00
Update README.md
This commit is contained in:
parent
0045cde1ae
commit
02ee1b8f60
24
README.md
24
README.md
@ -120,7 +120,21 @@ Please refer to ```run_main.py```, ```run_m4.py``` and ```run_pretrain.py``` for
|
||||
|
||||
|
||||
## Further Reading
|
||||
1, [**Foundation Models for Time Series Analysis: A Tutorial and Survey**](https://arxiv.org/pdf/2403.14735), in *KDD* 2024.
|
||||
1, [**TimeMixer++: A General Time Series Pattern Machine for Universal Predictive Analysis**](https://arxiv.org/abs/2410.16032), in *arXiv* 2024.
|
||||
[\[GitHub Repo\]](https://github.com/kwuking/TimeMixer/blob/main/README.md)
|
||||
|
||||
**Authors**: Shiyu Wang, Jiawei Li, Xiaoming Shi, Zhou Ye, Baichuan Mo, Wenze Lin, Shengtong Ju, Zhixuan Chu, Ming Jin
|
||||
|
||||
```bibtex
|
||||
@article{wang2024timemixer++,
|
||||
title={TimeMixer++: A General Time Series Pattern Machine for Universal Predictive Analysis},
|
||||
author={Wang, Shiyu and Li, Jiawei and Shi, Xiaoming and Ye, Zhou and Mo, Baichuan and Lin, Wenze and Ju, Shengtong and Chu, Zhixuan and Jin, Ming},
|
||||
journal={arXiv preprint arXiv:2410.16032},
|
||||
year={2024}
|
||||
}
|
||||
```
|
||||
|
||||
2, [**Foundation Models for Time Series Analysis: A Tutorial and Survey**](https://arxiv.org/pdf/2403.14735), in *KDD* 2024.
|
||||
|
||||
**Authors**: Yuxuan Liang, Haomin Wen, Yuqi Nie, Yushan Jiang, Ming Jin, Dongjin Song, Shirui Pan, Qingsong Wen*
|
||||
|
||||
@ -133,7 +147,7 @@ Please refer to ```run_main.py```, ```run_m4.py``` and ```run_pretrain.py``` for
|
||||
}
|
||||
```
|
||||
|
||||
2, [**Position Paper: What Can Large Language Models Tell Us about Time Series Analysis**](https://arxiv.org/abs/2402.02713), in *ICML* 2024.
|
||||
3, [**Position Paper: What Can Large Language Models Tell Us about Time Series Analysis**](https://arxiv.org/abs/2402.02713), in *ICML* 2024.
|
||||
|
||||
**Authors**: Ming Jin, Yifan Zhang, Wei Chen, Kexin Zhang, Yuxuan Liang*, Bin Yang, Jindong Wang, Shirui Pan, Qingsong Wen*
|
||||
|
||||
@ -146,7 +160,7 @@ Please refer to ```run_main.py```, ```run_m4.py``` and ```run_pretrain.py``` for
|
||||
}
|
||||
```
|
||||
|
||||
3, [**Large Models for Time Series and Spatio-Temporal Data: A Survey and Outlook**](https://arxiv.org/abs/2310.10196), in *arXiv* 2023.
|
||||
4, [**Large Models for Time Series and Spatio-Temporal Data: A Survey and Outlook**](https://arxiv.org/abs/2310.10196), in *arXiv* 2023.
|
||||
[\[GitHub Repo\]](https://github.com/qingsongedu/Awesome-TimeSeries-SpatioTemporal-LM-LLM)
|
||||
|
||||
**Authors**: Ming Jin, Qingsong Wen*, Yuxuan Liang, Chaoli Zhang, Siqiao Xue, Xue Wang, James Zhang, Yi Wang, Haifeng Chen, Xiaoli Li (IEEE Fellow), Shirui Pan*, Vincent S. Tseng (IEEE Fellow), Yu Zheng (IEEE Fellow), Lei Chen (IEEE Fellow), Hui Xiong (IEEE Fellow)
|
||||
@ -161,7 +175,7 @@ Please refer to ```run_main.py```, ```run_m4.py``` and ```run_pretrain.py``` for
|
||||
```
|
||||
|
||||
|
||||
4, [**Transformers in Time Series: A Survey**](https://arxiv.org/abs/2202.07125), in IJCAI 2023.
|
||||
5, [**Transformers in Time Series: A Survey**](https://arxiv.org/abs/2202.07125), in IJCAI 2023.
|
||||
[\[GitHub Repo\]](https://github.com/qingsongedu/time-series-transformers-review)
|
||||
|
||||
**Authors**: Qingsong Wen, Tian Zhou, Chaoli Zhang, Weiqi Chen, Ziqing Ma, Junchi Yan, Liang Sun
|
||||
@ -175,7 +189,7 @@ Please refer to ```run_main.py```, ```run_m4.py``` and ```run_pretrain.py``` for
|
||||
}
|
||||
```
|
||||
|
||||
5, [**TimeMixer: Decomposable Multiscale Mixing for Time Series Forecasting**](https://openreview.net/pdf?id=7oLshfEIC2), in ICLR 2024.
|
||||
6, [**TimeMixer: Decomposable Multiscale Mixing for Time Series Forecasting**](https://openreview.net/pdf?id=7oLshfEIC2), in ICLR 2024.
|
||||
[\[GitHub Repo\]](https://github.com/kwuking/TimeMixer)
|
||||
|
||||
**Authors**: Shiyu Wang, Haixu Wu, Xiaoming Shi, Tengge Hu, Huakun Luo, Lintao Ma, James Y. Zhang, Jun Zhou
|
||||
|
Loading…
Reference in New Issue
Block a user