Time-LLM/scripts/TimeLLM_M4.sh

164 lines
3.9 KiB
Bash
Raw Normal View History

2024-01-29 12:53:06 +08:00
model_name=TimeLLM
train_epochs=50
llama_layers=32
batch_size=24
learning_rate=0.001
d_model=8
d_ff=32
master_port=00097
num_process=8
comment='TimeLLM-M4'
accelerate launch --multi_gpu --mixed_precision bf16 --num_processes $num_process --main_process_port $master_port run_m4.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Monthly' \
--model_id m4_Monthly \
--model $model_name \
--data m4 \
--features M \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--llm_layers $llama_layers \
--d_model $d_model \
--d_ff $d_ff \
--patch_len 1 \
--stride 1 \
--batch_size $batch_size \
--des 'Exp' \
--itr 1 \
--learning_rate $learning_rate \
--loss 'SMAPE' \
--train_epochs $train_epochs \
--model_comment $comment
accelerate launch --multi_gpu --mixed_precision bf16 --num_processes $num_process --main_process_port $master_port run_m4.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Yearly' \
--model_id m4_Yearly \
--model $model_name \
--data m4 \
--features M \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--llm_layers $llama_layers \
--d_model $d_model \
--d_ff $d_ff \
--patch_len 1 \
--stride 1 \
--batch_size $batch_size \
--des 'Exp' \
--itr 1 \
--learning_rate $learning_rate \
--loss 'SMAPE' \
--train_epochs $train_epochs \
--model_comment $comment
accelerate launch --multi_gpu --mixed_precision bf16 --num_processes $num_process --main_process_port $master_port run_m4.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Weekly' \
--model_id m4_Weekly \
--model $model_name \
--data m4 \
--features M \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--llm_layers $llama_layers \
--d_model $d_model \
--d_ff $d_ff \
--patch_len 1 \
--stride 1 \
--batch_size $batch_size \
--des 'Exp' \
--itr 1 \
--learning_rate $learning_rate \
--loss 'SMAPE' \
--train_epochs $train_epochs \
--model_comment $comment
accelerate launch --multi_gpu --mixed_precision bf16 --num_processes $num_process --main_process_port $master_port run_m4.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Daily' \
--model_id m4_Daily \
--model $model_name \
--data m4 \
--features M \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--llm_layers $llama_layers \
--d_model $d_model \
--d_ff $d_ff \
--patch_len 1 \
--stride 1 \
--batch_size $batch_size \
--des 'Exp' \
--itr 1 \
--learning_rate $learning_rate \
--loss 'SMAPE' \
--train_epochs $train_epochs \
--model_comment $comment
accelerate launch --multi_gpu --mixed_precision bf16 --num_processes $num_process --main_process_port $master_port run_m4.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Quarterly' \
--model_id m4_Quarterly \
--model $model_name \
--data m4 \
--features M \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--llm_layers $llama_layers \
--d_model $d_model \
--d_ff $d_ff \
--patch_len 1 \
--stride 1 \
--batch_size $batch_size \
--des 'Exp' \
--itr 1 \
--learning_rate $learning_rate \
--loss 'SMAPE' \
--train_epochs $train_epochs \
--model_comment $comment
accelerate launch --multi_gpu --mixed_precision bf16 --num_processes $num_process --main_process_port $master_port run_m4.py \
--task_name short_term_forecast \
--is_training 1 \
--root_path ./dataset/m4 \
--seasonal_patterns 'Hourly' \
--model_id m4_Hourly \
--model $model_name \
--data m4 \
--features M \
--enc_in 1 \
--dec_in 1 \
--c_out 1 \
--llm_layers $llama_layers \
--d_model $d_model \
--d_ff $d_ff \
--patch_len 1 \
--stride 1 \
--batch_size $batch_size \
--des 'Exp' \
--itr 1 \
--learning_rate $learning_rate \
--loss 'SMAPE' \
--train_epochs $train_epochs \
--model_comment $comment