mirror of
https://github.com/KimMeen/Time-LLM.git
synced 2024-11-21 03:13:47 +08:00
243 lines
8.7 KiB
Python
243 lines
8.7 KiB
Python
|
import torch
|
||
|
import torch.nn as nn
|
||
|
import numpy as np
|
||
|
from math import sqrt
|
||
|
from utils.masking import TriangularCausalMask, ProbMask
|
||
|
from reformer_pytorch import LSHSelfAttention
|
||
|
|
||
|
|
||
|
class DSAttention(nn.Module):
|
||
|
'''De-stationary Attention'''
|
||
|
|
||
|
def __init__(self, mask_flag=True, factor=5, scale=None, attention_dropout=0.1, output_attention=False):
|
||
|
super(DSAttention, self).__init__()
|
||
|
self.scale = scale
|
||
|
self.mask_flag = mask_flag
|
||
|
self.output_attention = output_attention
|
||
|
self.dropout = nn.Dropout(attention_dropout)
|
||
|
|
||
|
def forward(self, queries, keys, values, attn_mask, tau=None, delta=None):
|
||
|
B, L, H, E = queries.shape
|
||
|
_, S, _, D = values.shape
|
||
|
scale = self.scale or 1. / sqrt(E)
|
||
|
|
||
|
tau = 1.0 if tau is None else tau.unsqueeze(
|
||
|
1).unsqueeze(1) # B x 1 x 1 x 1
|
||
|
delta = 0.0 if delta is None else delta.unsqueeze(
|
||
|
1).unsqueeze(1) # B x 1 x 1 x S
|
||
|
|
||
|
# De-stationary Attention, rescaling pre-softmax score with learned de-stationary factors
|
||
|
scores = torch.einsum("blhe,bshe->bhls", queries, keys) * tau + delta
|
||
|
|
||
|
if self.mask_flag:
|
||
|
if attn_mask is None:
|
||
|
attn_mask = TriangularCausalMask(B, L, device=queries.device)
|
||
|
|
||
|
scores.masked_fill_(attn_mask.mask, -np.inf)
|
||
|
|
||
|
A = self.dropout(torch.softmax(scale * scores, dim=-1))
|
||
|
V = torch.einsum("bhls,bshd->blhd", A, values)
|
||
|
|
||
|
if self.output_attention:
|
||
|
return (V.contiguous(), A)
|
||
|
else:
|
||
|
return (V.contiguous(), None)
|
||
|
|
||
|
|
||
|
class FullAttention(nn.Module):
|
||
|
def __init__(self, mask_flag=True, factor=5, scale=None, attention_dropout=0.1, output_attention=False):
|
||
|
super(FullAttention, self).__init__()
|
||
|
self.scale = scale
|
||
|
self.mask_flag = mask_flag
|
||
|
self.output_attention = output_attention
|
||
|
self.dropout = nn.Dropout(attention_dropout)
|
||
|
|
||
|
def forward(self, queries, keys, values, attn_mask, tau=None, delta=None):
|
||
|
B, L, H, E = queries.shape
|
||
|
_, S, _, D = values.shape
|
||
|
scale = self.scale or 1. / sqrt(E)
|
||
|
|
||
|
scores = torch.einsum("blhe,bshe->bhls", queries, keys)
|
||
|
|
||
|
if self.mask_flag:
|
||
|
if attn_mask is None:
|
||
|
attn_mask = TriangularCausalMask(B, L, device=queries.device)
|
||
|
|
||
|
scores.masked_fill_(attn_mask.mask, -np.inf)
|
||
|
|
||
|
A = self.dropout(torch.softmax(scale * scores, dim=-1))
|
||
|
V = torch.einsum("bhls,bshd->blhd", A, values)
|
||
|
|
||
|
if self.output_attention:
|
||
|
return (V.contiguous(), A)
|
||
|
else:
|
||
|
return (V.contiguous(), None)
|
||
|
|
||
|
|
||
|
class ProbAttention(nn.Module):
|
||
|
def __init__(self, mask_flag=True, factor=5, scale=None, attention_dropout=0.1, output_attention=False):
|
||
|
super(ProbAttention, self).__init__()
|
||
|
self.factor = factor
|
||
|
self.scale = scale
|
||
|
self.mask_flag = mask_flag
|
||
|
self.output_attention = output_attention
|
||
|
self.dropout = nn.Dropout(attention_dropout)
|
||
|
|
||
|
def _prob_QK(self, Q, K, sample_k, n_top): # n_top: c*ln(L_q)
|
||
|
# Q [B, H, L, D]
|
||
|
B, H, L_K, E = K.shape
|
||
|
_, _, L_Q, _ = Q.shape
|
||
|
|
||
|
# calculate the sampled Q_K
|
||
|
K_expand = K.unsqueeze(-3).expand(B, H, L_Q, L_K, E)
|
||
|
# real U = U_part(factor*ln(L_k))*L_q
|
||
|
index_sample = torch.randint(L_K, (L_Q, sample_k))
|
||
|
K_sample = K_expand[:, :, torch.arange(
|
||
|
L_Q).unsqueeze(1), index_sample, :]
|
||
|
Q_K_sample = torch.matmul(
|
||
|
Q.unsqueeze(-2), K_sample.transpose(-2, -1)).squeeze()
|
||
|
|
||
|
# find the Top_k query with sparisty measurement
|
||
|
M = Q_K_sample.max(-1)[0] - torch.div(Q_K_sample.sum(-1), L_K)
|
||
|
M_top = M.topk(n_top, sorted=False)[1]
|
||
|
|
||
|
# use the reduced Q to calculate Q_K
|
||
|
Q_reduce = Q[torch.arange(B)[:, None, None],
|
||
|
torch.arange(H)[None, :, None],
|
||
|
M_top, :] # factor*ln(L_q)
|
||
|
Q_K = torch.matmul(Q_reduce, K.transpose(-2, -1)) # factor*ln(L_q)*L_k
|
||
|
|
||
|
return Q_K, M_top
|
||
|
|
||
|
def _get_initial_context(self, V, L_Q):
|
||
|
B, H, L_V, D = V.shape
|
||
|
if not self.mask_flag:
|
||
|
# V_sum = V.sum(dim=-2)
|
||
|
V_sum = V.mean(dim=-2)
|
||
|
contex = V_sum.unsqueeze(-2).expand(B, H,
|
||
|
L_Q, V_sum.shape[-1]).clone()
|
||
|
else: # use mask
|
||
|
# requires that L_Q == L_V, i.e. for self-attention only
|
||
|
assert (L_Q == L_V)
|
||
|
contex = V.cumsum(dim=-2)
|
||
|
return contex
|
||
|
|
||
|
def _update_context(self, context_in, V, scores, index, L_Q, attn_mask):
|
||
|
B, H, L_V, D = V.shape
|
||
|
|
||
|
if self.mask_flag:
|
||
|
attn_mask = ProbMask(B, H, L_Q, index, scores, device=V.device)
|
||
|
scores.masked_fill_(attn_mask.mask, -np.inf)
|
||
|
|
||
|
attn = torch.softmax(scores, dim=-1) # nn.Softmax(dim=-1)(scores)
|
||
|
|
||
|
context_in[torch.arange(B)[:, None, None],
|
||
|
torch.arange(H)[None, :, None],
|
||
|
index, :] = torch.matmul(attn, V).type_as(context_in)
|
||
|
if self.output_attention:
|
||
|
attns = (torch.ones([B, H, L_V, L_V]) /
|
||
|
L_V).type_as(attn).to(attn.device)
|
||
|
attns[torch.arange(B)[:, None, None], torch.arange(H)[
|
||
|
None, :, None], index, :] = attn
|
||
|
return (context_in, attns)
|
||
|
else:
|
||
|
return (context_in, None)
|
||
|
|
||
|
def forward(self, queries, keys, values, attn_mask, tau=None, delta=None):
|
||
|
B, L_Q, H, D = queries.shape
|
||
|
_, L_K, _, _ = keys.shape
|
||
|
|
||
|
queries = queries.transpose(2, 1)
|
||
|
keys = keys.transpose(2, 1)
|
||
|
values = values.transpose(2, 1)
|
||
|
|
||
|
U_part = self.factor * \
|
||
|
np.ceil(np.log(L_K)).astype('int').item() # c*ln(L_k)
|
||
|
u = self.factor * \
|
||
|
np.ceil(np.log(L_Q)).astype('int').item() # c*ln(L_q)
|
||
|
|
||
|
U_part = U_part if U_part < L_K else L_K
|
||
|
u = u if u < L_Q else L_Q
|
||
|
|
||
|
scores_top, index = self._prob_QK(
|
||
|
queries, keys, sample_k=U_part, n_top=u)
|
||
|
|
||
|
# add scale factor
|
||
|
scale = self.scale or 1. / sqrt(D)
|
||
|
if scale is not None:
|
||
|
scores_top = scores_top * scale
|
||
|
# get the context
|
||
|
context = self._get_initial_context(values, L_Q)
|
||
|
# update the context with selected top_k queries
|
||
|
context, attn = self._update_context(
|
||
|
context, values, scores_top, index, L_Q, attn_mask)
|
||
|
|
||
|
return context.contiguous(), attn
|
||
|
|
||
|
|
||
|
class AttentionLayer(nn.Module):
|
||
|
def __init__(self, attention, d_model, n_heads, d_keys=None,
|
||
|
d_values=None):
|
||
|
super(AttentionLayer, self).__init__()
|
||
|
|
||
|
d_keys = d_keys or (d_model // n_heads)
|
||
|
d_values = d_values or (d_model // n_heads)
|
||
|
|
||
|
self.inner_attention = attention
|
||
|
self.query_projection = nn.Linear(d_model, d_keys * n_heads)
|
||
|
self.key_projection = nn.Linear(d_model, d_keys * n_heads)
|
||
|
self.value_projection = nn.Linear(d_model, d_values * n_heads)
|
||
|
self.out_projection = nn.Linear(d_values * n_heads, d_model)
|
||
|
self.n_heads = n_heads
|
||
|
|
||
|
def forward(self, queries, keys, values, attn_mask, tau=None, delta=None):
|
||
|
B, L, _ = queries.shape
|
||
|
_, S, _ = keys.shape
|
||
|
H = self.n_heads
|
||
|
|
||
|
queries = self.query_projection(queries).view(B, L, H, -1)
|
||
|
keys = self.key_projection(keys).view(B, S, H, -1)
|
||
|
values = self.value_projection(values).view(B, S, H, -1)
|
||
|
|
||
|
out, attn = self.inner_attention(
|
||
|
queries,
|
||
|
keys,
|
||
|
values,
|
||
|
attn_mask,
|
||
|
tau=tau,
|
||
|
delta=delta
|
||
|
)
|
||
|
out = out.view(B, L, -1)
|
||
|
|
||
|
return self.out_projection(out), attn
|
||
|
|
||
|
|
||
|
class ReformerLayer(nn.Module):
|
||
|
def __init__(self, attention, d_model, n_heads, d_keys=None,
|
||
|
d_values=None, causal=False, bucket_size=4, n_hashes=4):
|
||
|
super().__init__()
|
||
|
self.bucket_size = bucket_size
|
||
|
self.attn = LSHSelfAttention(
|
||
|
dim=d_model,
|
||
|
heads=n_heads,
|
||
|
bucket_size=bucket_size,
|
||
|
n_hashes=n_hashes,
|
||
|
causal=causal
|
||
|
)
|
||
|
|
||
|
def fit_length(self, queries):
|
||
|
# inside reformer: assert N % (bucket_size * 2) == 0
|
||
|
B, N, C = queries.shape
|
||
|
if N % (self.bucket_size * 2) == 0:
|
||
|
return queries
|
||
|
else:
|
||
|
# fill the time series
|
||
|
fill_len = (self.bucket_size * 2) - (N % (self.bucket_size * 2))
|
||
|
return torch.cat([queries, torch.zeros([B, fill_len, C]).to(queries.device)], dim=1)
|
||
|
|
||
|
def forward(self, queries, keys, values, attn_mask, tau, delta):
|
||
|
# in Reformer: defalut queries=keys
|
||
|
B, N, C = queries.shape
|
||
|
queries = self.attn(self.fit_length(queries))[:, :N, :]
|
||
|
return queries, None
|