mirror of
https://github.com/babysor/MockingBird.git
synced 2025-02-17 20:29:37 +08:00
add instruction to use pretrained models
This commit is contained in:
parent
f651ebf0bf
commit
67d301fc5b
@ -25,8 +25,11 @@
|
||||
* 安装 [ffmpeg](https://ffmpeg.org/download.html#get-packages)。
|
||||
* 运行`pip install -r requirements.txt` 来安装剩余的必要包。
|
||||
|
||||
### 2. 使用预训练好的编码器/声码器
|
||||
下载以下模型,解压替换到本代码库的根目录
|
||||
https://github.com/CorentinJ/Real-Time-Voice-Cloning/wiki/Pretrained-models
|
||||
|
||||
### 2. 使用 aidatatang_200zh 训练合成器
|
||||
### 3. 使用 aidatatang_200zh 训练合成器
|
||||
* 下载 adatatang_200zh 数据集并解压:确保您可以访问 *train* 文件夹中的所有 .wav
|
||||
* 使用音频和梅尔频谱图进行预处理:
|
||||
`python synthesizer_preprocess_audio.py <datasets_root>`
|
||||
@ -41,7 +44,7 @@
|
||||
> 仅供参考,我的注意力是在 18k 步之后出现的,并且在 50k 步之后损失变得低于 0.4。
|
||||
|
||||
|
||||
### 3. 启动工具箱
|
||||
### 4. 启动工具箱
|
||||
然后您可以尝试使用工具箱:
|
||||
`python demo_toolbox.py -d <datasets_root>`
|
||||
|
||||
|
@ -27,8 +27,10 @@
|
||||
* Install [ffmpeg](https://ffmpeg.org/download.html#get-packages).
|
||||
* Run `pip install -r requirements.txt` to install the remaining necessary packages.
|
||||
|
||||
|
||||
### 2. Train synthesizer with aidatatang_200zh
|
||||
### 2. reuse the pretrained encoder/vocoder
|
||||
* Download the following models and extract to the root directory of this project.
|
||||
https://github.com/CorentinJ/Real-Time-Voice-Cloning/wiki/Pretrained-models
|
||||
### 3. Train synthesizer with aidatatang_200zh
|
||||
* Download aidatatang_200zh dataset and unzip: make sure you can access all .wav in *train* folder
|
||||
* Preprocess with the audios and the mel spectrograms:
|
||||
`python synthesizer_preprocess_audio.py <datasets_root>`
|
||||
@ -44,7 +46,7 @@
|
||||

|
||||

|
||||
|
||||
### 3. Launch the Toolbox
|
||||
### 4. Launch the Toolbox
|
||||
You can then try the toolbox:
|
||||
|
||||
`python demo_toolbox.py -d <datasets_root>`
|
||||
|
Loading…
Reference in New Issue
Block a user